Activation of P2Y but not P2X(4) nucleotide receptors causes elevation of [Ca2+]i in mammalian osteoclasts.

نویسندگان

  • A F Weidema
  • S J Dixon
  • S M Sims
چکیده

Extracellular nucleotides cause elevation of cytosolic free Ca2+ concentration ([Ca2+](i)) in osteoclasts, although the sources of Ca2+ are uncertain. Activation of P2Y receptors causes Ca2+ release from stores, whereas P2X receptors are ligand-gated channels that mediate Ca2+ influx in some cell types. To examine the sources of Ca2+, we studied osteoclasts from rat and rabbit using fura 2 fluorescence and patch clamp. Nucleotide-induced rise of ([Ca2+](i)) persisted on removal of extracellular Ca2+ (Ca), indicating involvement of stores. Inhibition of phospholipase C (PLC) with U-73122 or inhibition of endoplasmic reticulum Ca(2+)-ATPase with cyclopiazonic acid or thapsigargin abolished the rise of ([Ca2+](i)). After store depletion in the absence of Ca, addition of Ca led to a rise of ([Ca2+](i)) consistent with store-operated Ca2+ influx. Store-operated Ca2+ influx was greater at negative potentials and was blocked by La(3+). In patch-clamp studies where PLC was blocked, ATP induced inward current indicating activation of P2X(4) nucleotide receptors, but with no rise of ([Ca2+](i)). We conclude that nucleotide-induced elevation of [Ca(2+)](i) in osteoclasts arises primarily through activation of P2Y nucleotide receptors, leading to release of Ca2+ from intracellular stores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translocation of neuronal nitric oxide synthase to the plasma membrane by ATP is mediated by P2X and P2Y receptors

BACKGROUND The translocation of neuronal nitric oxide synthase (nNOS) from the cytosol to the membrane is functionally coupled to the activation of N-methyl-D-aspartate (NMDA) receptors at synapses. Whereas there is abundant evidence indicating that ATP and nitric oxide are involved in nociceptive transmission, whether nNOS is activated by ATP remains unknown. We recently established a fluoresc...

متن کامل

Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation

Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca2+-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y) and ionotropic (P2X) cell signaling in target cells. Such microglia activation results in increased ...

متن کامل

Adenosine triphosphate induces Ca2+ signal in epithelial cells of the mouse caput epididymis through activation of P2X and P2Y purinergic receptors.

In the present study, we developed a novel method to analyze the calcium (Ca2+) signal in living slices of mouse caput epididymides by applying calcium imaging on Fura-2-loaded vibratome slices. The data revealed that in epithelial cells of mouse caput epididymides, ATP induces a rapid Ca2+ signal that is sustained after 60 sec. Preincubating the sections in Ca2+-free medium in the presence of ...

متن کامل

Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors.

Vasopressin regulates water reabsorption in the collecting duct, but extracellular nucleotides modulate this regulation through incompletely understood mechanisms. We investigated these mechanisms using immortalized mouse collecting duct (mpkCCD) cells. Basolateral exposure to dDAVP induced AQP2 localization to the apical membrane, but co-treatment with ATP internalized AQP2. Because plasma mem...

متن کامل

A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors.

We have examined the role of ATP-dependent P2X(1) receptors in megakaryocytes (MKs) and platelets using receptor-deficient mice and selective agonists. Alpha,beta-meATP- and ATP- evoked ionotropic inward currents were absent in whole-cell recordings from MKs of P2X(1)(-/-) mice, demonstrating that the P2X receptor phenotype in MKs, and by inference, platelets, is due to expression of homomeric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 280 6  شماره 

صفحات  -

تاریخ انتشار 2001